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A B S T R A C T

Seismic site classification maps are essential for earthquake hazard assessment and risk mitigation. This study 
presents a novel methodological framework for developing site classification maps for the Himalayan region by 
integrating geological information, geomorphological parameters, and shear wave velocity (Vs30) measurements 
within a machine-learning architecture. We compiled a comprehensive Vs30 database comprising 3077 data 
points from 39 studies across the Himalayan region, utilizing twelve predictor variables derived from digital 
elevation models and geological maps. Three individual machine learning models were developed and opti-
mized, achieving Mean Absolute Errors (MAEs) between 48 and 53 m/s and Root Mean Squared Errors (RMSEs) 
between 70 and 77 m/s on their test set. A Stacked Ensemble Model (SEM) was developed using meta-learning to 
optimally combine the three base models, resulting in test set performance metrics of 53 m/s MAE, 0.38 R2, and 
78.2 m/s RMSE. The SEM delivers a 64.6 % overall improvement in prediction accuracy (MAE) compared to the 
existing slope-based method, with the most significant gains of 80.5 % error reduction occurring in the 180–259 
m/s range representing typical urban soil conditions. Beyond average error reduction, the SEM shows improved 
error consistency through RMSE improvements (52.6 %) compared to the slope-based method. It confirms 
enhanced performance without additional prediction volatility, making it particularly valuable for engineering 
applications requiring accuracy and reliability. The model reveals significant spatial heterogeneity across the 
Himalayan region, with mountainous areas classified as site classes A and B (Vs30 > 760 m/s), foothills as classes 
C and D (360–760 m/s), and deltaic regions as classes D and E (Vs30 < 360 m/s). Urban-scale maps for Delhi, 
Dhaka, Kathmandu, and Guwahati demonstrate the approach’s capability to capture local variations critical for 
seismic hazard assessment and building code implementation. This methodology overcomes the limitations of 
previous single-predictor approaches, providing a robust framework for regional-scale Vs30 prediction in 
geologically complex mountainous terrain.

1. Introduction

Site classification plays a critical role in earthquake hazard estima-
tion and risk assessment. It provides essential information about site 
response and amplification characteristics, which inform preventive 
measures, urban planning decisions, and risk management strategies at 
both local and regional scales. Appropriate site classification contributes 
significantly to building stock safety and enables the development of 
more effective local building codes and design recommendations (BSSC, 
2015). Furthermore, site classification serves as a foundation for esti-
mating secondary earthquake effects, including site amplification and 
liquefaction potential at specific locations (Heath et al., 2020; Lin et al., 
2021). This assessment capability is particularly valuable in seismically 

active regions such as the Himalayas, where several devastating earth-
quakes have occurred throughout history.

The Himalayan region has experienced numerous major seismic 
events, including the Kangra earthquake of 1905 (Mw 7.5), Bihar in 
1934 (Mw 8.1), Assam in 1950 (Mw 8.6), Kashmir in 2005 (Mw 7.6), 
Sikkim in 2011 (Mw 6.9), and Nepal in 2015 (Mw 7.8). These events 
have resulted in substantial loss of human lives and extensive infra-
structure damage (Kayal, 2008). The severity of earthquake-related 
losses can be significantly reduced through comprehensive prepared-
ness and targeted mitigation measures, which fundamentally depend on 
understanding site conditions. Knowing site conditions is essential for 
earthquake preparedness, evaluating existing building inventory and 
planning future infrastructure development (Martínez-Segura et al., 
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2024). Evidence from global earthquake events consistently demon-
strates that site conditions substantially influence building response, 
resulting in damage patterns and associated economic losses (Trifunac, 
2016; Panzera et al., 2018; Brando et al., 2020). Therefore, systematic 
assessment and classification of site conditions at local, regional, and 
national scales can enable the construction of more resilient structures 
and help prevent catastrophic failures. With this objective in mind, this 
study utilizes information from various sources to conduct site classifi-
cation across the Himalayan region at a regional scale.

Past studies for seismic site classification based on parameters like 
shear wave velocity (Vs), geology, and natural frequency have been 
done worldwide (Walling et al., 2009; Yilar et al., 2017; Anbazhagan 
et al., 2019; Verdugo, 2019; Kim et al., 2021; Geyin and Maurer, 2023; 
Di Martino et al., 2024). These classification systems have been exten-
sively applied in earthquake studies to assess seismic site effects, 
amplification potential and microzonation purposes (Mihalić et al., 
2011; Molnar et al., 2020; Falcone et al., 2021).

Measuring shear wave velocity under field conditions typically em-
ploys various geotechnical and geophysical methods. Geotechnical ap-
proaches include cross-hole (CH) and down-hole (DH) testing (Kramer 
and Stewart, 2024), while geophysical methods encompass techniques 
such as Multichannel Analysis of Surface Waves (MASW) (Park et al., 
1999) and Spectral Analysis of Surface Waves (SASW) (Nazarian and 
Stokoe, 1984). Additionally, shear wave velocity can be determined 
indirectly using correlations with Standard Penetration Test (SPT-N) 
values and Cone Penetration Test (CPT) measurements from existing or 
site-specific investigations (Akin et al., 2011; Ansary et al., 2023).

For site characterization based on shear wave velocity, the average 
velocity in the top 30 m of a site (Vs30) has emerged as a standard 
representative parameter derived from the site’s Vs profile. While site- 
specific studies provide detailed assessments of local site effects, 
regional-level evaluations often necessitate reliance on simplified proxy- 
based methods (Vilanova et al., 2018). The following section presents a 
comprehensive overview of site classification studies conducted globally 
and specifically within the Himalayan region, utilizing Vs30 as the 
primary classification parameter.

1.1. Previous approaches to regional site classification

To overcome the limitations of direct measurement, researchers have 
developed proxy-based approaches that correlate Vs30 with readily 
available geological and topographical data. Matsuoka et al. (2005)
developed site amplification maps for Japan using different geo-
morphologic features such as elevation, slope value, distance from the 
river, coastline, and mountain or hill. Wald and Allen (2007) pioneered 
a method correlating topographic slope with Vs30, which has been 
widely implemented due to the global availability of digital elevation 
models (DEMs). This approach is based on the observation that steeper 
slopes typically correspond to more competent materials with higher 
shear wave velocities. In comparison, gentler slopes generally indicate 
softer sediments with lower velocities. While efficient for global appli-
cations, this slope-based approach has demonstrated limitations in re-
gions with complex geology (Thompson et al., 2014).

Subsequent studies have explored more sophisticated approaches 
combining multiple predictors. Thompson et al. (2014) developed a 
hybrid model incorporating geology and topography and measured 
Vs30 values for California. Vilanova et al. (2018) created a geologically 
based Vs30 model for Portugal, demonstrating improved performance 
over topography-based methods alone. Mori et al. (2020) utilized 
geomorphological parameters for developing a national Vs30 map for 
Italy. Crespo et al. (2022) gave a Vs30 estimation model in the Iberian 
Peninsula while using the site’s topographic slope, geological age and 
lithology as proxies for estimation. For the Tehran region, Abbasne-
jadfard et al. (2023) utilized a Vs30 database (prepared using scientific 
reports, government agencies, and private engineering consultancy 
companies) to prepare a Vs30 map while utilizing different spatial 

interpolation methods.
More recently, machine learning techniques have shown consider-

able promise in integrating multiple predictors for Vs30 estimation, as 
Geyin and Maurer (2023) demonstrated for the United States and Puerto 
Rico. In China, Xie et al. (2016) developed a Vs30-based map for the 
Beijing plain area, utilizing proxies like slope and surficial geological 
features. They have highlighted that geology-based estimation of Vs30 is 
more reliable than slope-based estimation as the field values of Vs30 for 
their region were usually lower than those estimated by Wald and 
Allen’s (2007) model. Liu et al. (2017) developed a multiscale random- 
field framework to develop a Vs30 map for the Suzhou city area. To 
account for spatial variability across different length scales correlations 
were used to develop the Vs30 maps. Li et al. (2019) used a slope- 
geological method to develop a site classification map for China. They 
have utilized geological features such as age, soil properties, and 
depositional area characteristics as predictors for Vs30. Zhang et al. 
(2023) have developed Vs30-based maps for different regions and 
provinces of China using parameters such as slope, surface texture, and 
landform features as input parameters.

In these different studies, maps have been produced at different 
resolutions (depending on the information available for Vs30 data and 
its predictors, such as geological and topographical data), which may 
not capture variation at the local scale for the sites where geological 
formations are diverse. In past studies, the areas covered for site clas-
sifications have soft soil sites with relatively flat terrains, and there is a 
general lack of Vs30 measurements for relatively steeper slopes, leading 
to underprediction of Vs30 corresponding to higher site classes (Geyin 
and Maurer, 2023).

Previous site classification efforts in the Himalayan region have 
primarily relied on interpolation techniques or single-parameter proxy 
methods. Sitharam et al. (2015) have prepared a site class map for the 
whole of India (where Vs30 is a site classification parameter based on 
the slope) using the Allen and Wald (2009) criterion, which is based on 
NEHRP site classes (Table 1). They used 10 km × 10 km resampled grids 
for the slope analysis and final Vs30 map preparation for their site class 
map. At the local scale, Rahman et al. (2016, 2018) have developed site 
characterization maps for Chittagong and Dhaka cities, respectively, 
using Holocene soil thickness as a predictor while employing an inverse 
distance weighing scheme for interpolation. Studies like Satyam and Rao 
(2008), Mahajan et al. (2012), and Anbazhagan et al. (2013) have uti-
lized kriging for spatial interpolation of Vs30 values for Delhi, Jammu, 
and Lucknow cities, respectively. In a few studies for the Himalayan 
region, contour maps have been prepared for site classification (Kandpal 
et al., 2009; Naik et al., 2014; Bajaj and Anbazhagan, 2019; Riyaz and 
Singh, 2022).

These studies face three significant limitations. First, interpolation 
techniques are highly dependent on data density and may not accurately 
capture the complex spatial variations in geology and topography 
characteristic of the Himalayas. Second, single-parameter proxy 
methods fail to account for the combined effects of multiple factors 
influencing site response. Third, the resolution of existing maps is 
typically insufficient for detailed hazard assessment, particularly in 
areas with complex terrain where site conditions can vary significantly 
over short distances.

Table 1 
Adopted Seismic Site Classification scheme in the present study based on Vs30 
(shear wave velocity for top 30 m of the ground) and SPT-N as per National 
Earthquake Hazards Reduction Program or NEHRP (BSSC, 2004).

Site Class Description Vs30 (m/s) SPT-N

A Hard Rock >1500 –
B Rock 760–1500 >50
C Very Dense Soil and Soft Rock 360–760 15–50
D Stiff Soil 180–360 <15
E Soft Clay Soil <180 –
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1.2. Research objectives

Despite the geological and seismic significance of the Himalayan 
region, comprehensive site classification maps that integrate multiple 
predictors and provide adequate spatial resolution remain unavailable. 
To address this gap, our study aims to: 

1. Develop a comprehensive Vs30 database for the Himalayan region 
by compiling and standardizing data from diverse sources.

2. Identify and quantify the relative importance of geological and 
geomorphological predictors for Vs30 estimation.

3. Create and validate a robust machine-learning model that optimizes 
prediction accuracy across diverse terrain types.

4. Generate high-resolution site classification maps for the Himalayan 
region and key urban centres.

This study advances the field of seismic site classification by 
demonstrating an integrated approach that combines multiple data 
sources and machine learning techniques to overcome the limitations of 
previous methods. The resulting maps provide critical information for 
earthquake hazard assessment, infrastructure planning, and building 
code implementation in this seismically vulnerable region.

2. Geology and geomorphology of the himalayan region

The Himalayan region features a wide range of geological and 
geomorphological features that significantly influence seismic behav-
iour across different sites. The geomorphology of the Himalayan region 
is characterized by extreme variations in elevation, relief, and drainage 
patterns, directly influencing site conditions and seismic response. 
Mountains, valleys, canyons, gorges, rivers, floodplains and deltas are a 
few of the major surficial features of the region. At its base lies the Indo- 
Gangetic Plains, which encompass an area of 700,000 km2 

(Gangopadhyay, 2013). This plain lies at the foothills of the Himalayas 
and is bounded in the south by the Deccan Plateau. The Indo-Gangetic 
Plain is divided into two major river drainage systems - Indus in the 
West and Ganga-Brahmaputra towards the East; at the base of the 
Himalayas forms an alluvial floodplain with different soil types ranging 
from very fine clays to large boulders.

Sediments from the Pleistocene age and recent deposits of Indo- 
Gangetic alluvium cover the floodplains. Intermontane valleys, such as 
the Kathmandu Valley in Nepal and the Kashmir Valley in India, 
represent important population centres. These valleys are typically filled 
with thick sequences of lacustrine and fluvial sediments, which can 
significantly amplify seismic waves. The complex basin geometry and 
sediment heterogeneity create spatial variations in site response that 
require high-resolution characterization. Major rivers in this region are 
(in west to east direction) – Indus, Ganga, and Brahmaputra. These rivers 
have many tributaries, e.g., Sutlej, Beas, and Chenab for the Indus River, 
which in turn have sub-tributaries forming a larger river drainage 
network system of the region (Gangopadhyay, 2013). The major river 
basins for the region are – the Indus Basin (in the west), Ganga Basin (in 
Central Himalaya), Barak Basin (covering parts of India, Bangladesh and 
Myanmar), and Brahmaputra Basin (in the east). Quaternary deposits, in 
the form of alluvial fans and other fluvial depositional units, are com-
mon in the entire Himalayan foothills. These diverse geomorphological 
settings create a complex mosaic of site conditions across the Himalayan 
region that any single parameter cannot adequately characterize. 
Therefore, integrating geological and geomorphological information is 
essential for comprehensive site classification.

3. Dataset preparation

3.1. Past studies and reports

In past studies, methods of Vs30 estimation are cross-hole and 

downhole seismic, MASW, microtremor measurements, Multiple Simu-
lations with One Receiver (MSOR), Horizontal to Vertical Spectral Ratio 
(HVSR), Ambient Noise Interferometry (ANI) and SPT-N-based corre-
lations (Table 2). Data from 39 studies were collected with 3077 data 
points (Table 2). These Vs30 data points are shown in Fig. 1. Most of 
these studies are in India and Bangladesh, and only a few are in Nepal 
(De Risi et al., 2021) and Bhutan (Sarkar et al., 2021; Tempa et al., 
2020). At the same time, this data covers different terrains and geog-
raphies and is useful to estimate Vs30 values at a macro & micro scale. 
Some past studies have developed Vs and SPT-N correlation using data 
collected from SPT and geophysical methods such as MASW, CH, DH, 
etc. These results have then been utilized to develop site characteriza-
tion maps at a local level. In some cases, existing or newly developed 
SPT-N vs Vs relations were used to obtain the Vs range for the SPT-N 
value, which has been further used to get the Vs30 value for the other 
locations in the same study (Rahman et al., 2016; Rahman et al., 2018a).

3.2. Vs30 data types

Gilder et al. (2022) have classified Vs30 datasets into primary and 
secondary types for which rationale was adopted while considering 
features such as - the source of the data (direct, indirect and proxy- 
based), its reliability, depth of the profiles, data format type (such as 
point, grid or raster) and processing techniques used to generate such 
data. For the present study, shear wave velocity data collected from past 
studies can be divided based on their information relating to Vs30 
calculation and the geolocation data format available. Studies were 
divided based on two geolocation information categories which are – 
G1: sites with reported/known lat and long values, and G2: sites with 
locations marked on a map (Table 2). In the case of G1 studies, infor-
mation was usually provided in the main text or supplementary files of 
the studies. For Pandey et al. (2016) and Harinarayan and Kumar (2018)
studies, site locations were obtained/cross-referenced by utilizing PES-
MOS (2024) seismic stations’ location information.

3.3. Georeferencing for available maps

In a GIS environment such as QGIS (QGIS Development Team, 2023), 
georeferencing tools are available to assign spatial coordinates to the 
digital map image. In the present study, a portion of Vs30 data was 
extracted from the published maps in point format using georeferencing. 
To get the Vs30 data points and their spatial coordinates, we have used 
Metric Georeferencing, which utilizes geotagged locations as a refer-
ence/input and a mapped coordinated reference system (CRS) for 
georeferencing (Yao Xiaobai, 2020). This technique uses Ground Control 
Points (GCPs) to peg down the map onto the globe with a particular CRS. 
Usually, more than three points are given as input GCPs with respect to 
which position of all other points on the map is calculated.

Fig. 2 shows the schematics of the georeferencing procedure adopted 
in the present study. The following steps were taken for extracting Vs 
values and site coordinates for the test locations from available study 
maps with coordinates marked on their borders and with or without 
grids (such as Mahajan et al., 2007): 

1. Grid drawing: Grids were drawn on the figure with reported Vs 
values (without grid).

2. Image overlay: This image was overlaid with the image showing test 
site locations on a map to get a final image showing site locations on 
a Vs map with a grid.

3. Georeferencing: The final image was then exported to the GIS 
interface, and site locations were geotagged using the Georeferencer 
toolbox available in the GIS interface using intersection points of grid 
lines as GCPs.

4. Coordinate extraction: Site location coordinates were finally expor-
ted from the georeferenced layer in the GIS interface.
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5. Value assignment: Vs values corresponding to each site location were 
read from the original Vs map reported in the study.

In some studies (DST, 2007; Mahajan et al., 2012; Bajaj and 
Anbazhagan, 2019; Riyaz and Singh, 2022), Vs30 values were given as 
contour maps. For such studies, the site location maps were overlaid 
over the contour map. Then, the Vs30 value of a particular site is 
calculated by taking an average of the contours within which it lies. 
Then, these images were georeferenced using the same procedure as 
described previously.

For DST (2007), extracted geolocations from contour maps matched 
well with the locations given for sites (but without Vs30 values) in the 
Annexure-VI of the study. For extraction of the Vs30 data points from 
Bajaj and Anbazhagan’s (2019) study, after following the steps of 
georeferencing to get Vs30, the Vs30 ranges of different classes (as per 
NEHRP) were constrained according to the range given in Table 4 of the 
study. For Kuldeep Shekar et al. (2022), 64 locations were georefer-
enced, of which 10 locations had unreliable HVSR values and were not 
considered for Vs30 evaluation. In the study by Rahman et al. (2016) for 
Chittagong Vs30, values with site names are given in the manuscript, 
and location coordinates of these sites were obtained using the geore-
ferencing procedure. Fig. 3 shows the spatial distribution of Vs30 data 
points compiled from these studies, which are predominantly concen-
trated in urban regions and large population centres.

3.4. Elevation and geological dataset

Predictors for Vs30 were determined using elevation (in the form of a 
digital elevation model or DEM) and geological dataset as input layer. 
Shuttle Radar Topographic Mission (SRTM) 30 m resolution DEM is 
utilized for elevation data and the calculation of other morphological 
predictors, as mentioned in Section 4.1. For the geological information 
of the region, we utilized geological maps by Wandrey (1998). Although 
finer resolution maps are available in the public domain, they were not 
used as the number of classes in such maps is high for the different sites, 
affecting model prediction capability as Vs30 information for finer 
distinct classes is usually unavailable, and it causes redundancy in the 
model due to the sparsity of predictors.

3.5. Dataset features

Fig. 4 shows a histogram of collected Vs30 datapoints with bound-
aries marked according to different NEHRP site classes (Table 1). We 
have drawn plots from the data collected from various studies to see how 
these sites’ elevation and slope values relate to corresponding Vs30 
values. A plot of Vs30 vs Elevation (Fig. 5a) shows that higher Vs30 
values are observed over increasing elevation ranges, corresponding to 
higher slopes. A similar trend is observed in a Vs30 vs Slope plot 
(Fig. 5b), where over the range of slope values as elevation increases, 
there is a corresponding increase in Vs30 values. Matsuoka et al. (2006)

Table 2 
List of all studies considered for the dataset preparation with geolocation information categories (or GIC): G1 – sites with reported/known lat and long values, and G2 – 
Sites with locations marked on a map.

S/N Study Tests* Site Characterization GIC Data Region*

1 DST (2007) SPT, HVSR Vs30 (SPT-N based) G1 200 Guwahati
2 Kuldeep Shekar et al. (2022) HVSR, ANI Vs30 (HVSR and ANI based) G2 54 Assam
3 Shukla and Sil (2023) HVSR Vs30 (HVSR-based) G1 7 Assam
4 Sarkar et al. (2021) MASW Vs30 G1 5 Phuentsholing
5 Tempa et al. (2020) MASW Vs30 G2 7 Bhutan
6 Kumar and Kumar (2023) SPT Vs30 (SPT-N based) G1 48 BR
7 Rahman et al. (2016) MASW, SSMM, DS, SPT Vs30, Vs30 (SPT-N based) G2 87 Chittagong
8 Rahman et al. (2018b) MASW, SPT, DS Vs30, Vs30 (SPT-N based) G2 146 Dhaka
9 Ansary et al. (2023) SPT, DS Vs30 (SPT-N based) G2 390 Dhaka
10 Satyam and Rao (2008) MASW Vs30 G1 117 DL
11 NCS (2016) MASW, DS, CS, SPT Vs30, Vs30 (SPT-N based) G1 535 DL
12 Muthuganeisan and Raghukanth (2016) MASW Vs30 G1 73 HP
13 Mahajan and Kumar (2023) MASW Vs30 G1 67 Kangra
14 Sharma and Mahajan (2022) HVSR, MSOR Vs30 G2 82 Shimla
15 Puri and Jain (2021) SPT-N N30 G2 66 HR
16 Pandey et al. (2021) MASW, HVSR Vs30 G1 54 UK, UP
17 Bajaj and Anbazhagan (2019) MASW Vs30 G2 276 PB, HR, DL, UP, BR
18 Harinarayan and Kumar (2018) HVSR Vs30 G2 88 HP, HR, PB, DL, UK
19 Riyaz and Singh (2022) MASW Vs30 G1 21 Jammu
20 Zahoor et al. (2021) MASW, SPT Vs30, N30 G2 33 Srinagar
21 Mahajan et al. (2012) MASW, HVSR Vs30 G2 28 Jammu
22 Imam et al. (2023) MASW Vs30 G1 4 Jharkhand
23 Sil and Sitharam (2017) MASW Vs30 G2 25 Aizawl (Mizoram)
24 De Risi et al. (2021) DS Vs30 G1 15 Kathmandu
25 Bhutani and Naval (2020) SPT Vs30 (SPT-N based) G1 45 Punjab
26 Kandpal et al. (2009) SPT Vs30 (SPT-N based) G2 24 Chandigarh
27 Rahman et al. (2019) SPT, DS, MASW Vs30, Vs30 (SPT-N based) G1 71 Sylhet
28 Rahman et al. (2018a) SPT, DS, MASW Vs30, Vs30 (SPT-N based) G2 22 Sylhet
29 Sil and Sitharam (2014) MASW, SPT Vs30 G2 27 Agartala
30 Sharma et al. (2020) 1D-Active MASW, HVSR Vs30 G1 6 Uttarakhand
31 Mahajan et al. (2007), Mahajan (2009) 2D- Active MASW Vs30 G2 38 Dehradun
32 Pandey et al. (2016) 1D- Active MASW Vs30 G1 12 UK
33 Naik et al. (2014) SPT, DS Vs30 (SPT-N based) G2 12 Kanpur
34 Singh et al. (2020) SPT Vs30 (SPT-N based) G1 22 Allahabad
35 Anbazhagan et al. (2013) MASW, SPT Vs30, Vs30 (SPT-N based) G2 55 Lucknow (UP)
36 Chatterjee and Choudhury (2013) SPT Vs30 (SPT-N based) G1 8 Kolkata
37 Bandyopadhyay et al. (2019) SPT, DS Vs30 G1 18 Kolkata
38 Nath et al. (2014) SPT, DS, HVSR Vs30 G1 218 Kolkata
39 Nath et al. (2022) SPT, MASW, DS, HVSR Vs30 (SPT-N based) G2 71 West Bengal

* Abbreviations: SPT – Standard Penetration Test, HVSR – Horizontal to Vertical Spectral Ratio, MASW – Multichannel Analysis of Surface Waves, ANI – Ambient 
Noise Interferometry, DS – Downhole Seismic, CS – Crosshole Seismic, SSMM - Small Scale Microtremor Measurement, MSOR - Multiple Simulations with One 
Receiver. State name abbreviations: Bihar – BR, Delhi – DL, Himachal Pradesh – HP, Punjab – PB, Haryana – HR, Uttarakhand – UK, Uttar Pradesh – UP.
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also made similar observations: “…the higher the elevation, the steeper 
the slope angle and the shorter the distance from the mountain or hill, 
Vs30 values become larger”. Although such trends exist, no physics- 
based formulas relate these parameters with Vs30 (Geyin and Maurer, 
2023). In past studies, empirical methods relying on regression-based 
approaches have been used to find predictors for Vs30. These rely on 
hypothesis testing to check the statistical importance of the estimated 
regression coefficients. Then, these coefficients were used to understand 
the effect of different predictors on Vs30. They suffer from the issue that 
as the number of predictors increases, it becomes difficult to explain the 
impact of different predictors in a physical sense. We circumvent this 
issue using ML approaches, which can provide meaningful insights and 
predictions without emphasizing the explanatory part.

4. Methodology

We developed a machine learning-based approach that integrates 
multiple geological and geomorphological predictors for Vs30 predic-
tion across the Himalayan region to overcome the limitations of single- 
parameter proxy methods and interpolation techniques identified pre-
viously. To develop Vs30 site maps, the procedure adopted was as fol-
lows: (i) selection of model prediction parameters, (ii) extraction of 
prediction parameters using DEM at a certain resolution, (iii) prediction 
models’ selection to create a stacked model, (iv) hyperparameter opti-
mization of the stacked model, (v) modification of the stacked model to 
improve prediction for steep slopes, and (vi) Vs30 map preparation at 
different resolutions. Parameter extraction and map preparation were 
done using QGIS software (QGIS Development Team, 2023). Data pre-
processing, model development, and analysis were done using MATLAB 
software (MATLAB, 2023) for the prediction model.

4.1. Model prediction parameters

For Vs30 prediction, we used geology, terrain heterogeneity, and 
geomorphology-based parameters to estimate Vs30 values using ma-
chine learning algorithms. A total of 12 parameters were used (Table 3), 

which are (1) elevation of the particular site, (2) slope values, (3) 
geological features, its (4) nearest distance to the river; geomorpho-
logical indices such as (5) Topographic Position Index or TPI, (6) Terrain 
Ruggedness Index or TRI; (7) Topographic Wetness Index or TWI; (8) 
roughness; (9) profile and (10) plan curvatures; (11) Vector Ruggedness 
Measure (VRM) and terrain classification (in terms of peaks, ridges, 
passes, channels pits and planes) using (12) morphometric features.

Next, we briefly describe a few of these features and the rationale 
behind adopting them. From the observation that the Vs30 value for a 
site relates to its elevation and slope, these two parameters were chosen 
as predictors for the modelling (Fig. 5a, b). Geological information of a 
site can play a crucial role in its shear wave velocity estimation (Rahman 
et al., 2019; Geyin and Maurer, 2023). Using the geological map 
(Wandrey, 1998), for Vs30 data points, a total of 13 geological classes 
were obtained. Fig. 6 shows the region’s geological map, which is pre-
pared by modifying the Wandrey (1998) geological map for South Asia. 
The legend of the figure geological classes obtained corresponding to the 
Vs30 datapoints locations have been mentioned. Fig. 7 shows the dis-
tribution of Vs30 data points across the four most common geological 
classes.

Most of the sites of Vs30 data points belong to Quaternary sediments 
sites, Precambrian rocks sites, Neogene sedimentary rocks sites and 
Quaternary sand and dunes sites. Another parameter indicating the 
nearest distance to the river has been used in past studies to correlate 
with the Vs30 (Matsuoka et al., 2006; Geyin and Maurer, 2023). It relies 
on the general observation that sites closer to the river network are 
likelier to belong to a lower site class than sites farther away. Hydro-
SHEDS dataset (Lehner and Grill, 2013) has been utilized to calculate 
the closest distance to a river network.

Similarly, the Terrain Wetness Index (TWI) is a parameter related to 
a landscape’s water accumulation potential (Sörensen et al., 2006). 
Based on the assumption that the locations with more water accumu-
lation potential relate to soil sites and their types compared to rocky 
sites, this parameter can contribute to Vs30 estimation. Topographic 
Position Index (TPI) is the difference between a cell elevation value and 
the average elevation of the neighbourhood around that cell (Jenness, 

Fig. 1. A plot showing all the Vs30 data points for the region collected from past studies.
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2006). The Terrain Ruggedness Index (TRI) parameter quantitatively 
measures topographic heterogeneity. It is calculated as the mean value 
of the absolute differences in elevation between a focal cell and its eight 
surrounding cells (Riley et al., 1999). TRI values indicate a mountainous 
region with high positive values, whereas values closer to zero indicate 
relatively flat grounds. The surface Roughness parameter captures sur-
ficial irregularities while utilizing a location’s elevation data as input. It 
is measured as the largest difference in elevation for a central pixel while 
considering its surrounding cells. Profile and plan curvature are calcu-
lated parallel and perpendicular to the direction of the maximum slope 
to identify the convexity/concavity of the terrain. In the present case, 
the SRTM DEM model (with 30 m spatial resolution) and river network 
data from the HydroSHEDS database were utilized to calculate these 
parameters.

4.2. Prediction parameter extraction

A resampling scheme was used in the GIS environment to prepare 
maps at a certain scale, similar to Sitharam et al. (2015). Then, the 
following steps were followed to get all parameter values:

Step 1: In the GIS environment, all parameter values were calculated 
in the raster format utilizing the DEM base layer except the geological 
information layer, which was already available in the vector format. 
This step generated different raster layers for each parameter mentioned 
in Table 3.

Step 2: After resampling the base DEM to a particular resolution 
using a bilinear resampling technique, each pixel in the newly formed 
raster layer is converted to a vector datapoint, forming a final gridded 
vector DEM layer.

Step 3: All other layers resampled to the same resolution as the DEM 
layer were then sampled using the gridded vector DEM layer. This step 
generated a vector layer with an attribute table having all the 

Fig. 2. Schematics of georeferencing procedure adopted in the present study for Vs30 datapoints extraction.

H. Thakur and P. Anbazhagan                                                                                                                                                                                                               Engineering Geology 355 (2025) 108229 

6 



parameters (except geological information).
Step 4: Finally, geological information corresponding to each point 

in the vector layer (containing all other parameters information) is ob-
tained by performing spatial joins in the GIS interface, which transfers 
the attribute of a base vector layer (here, geological data) to another 
layer.

This final extracted vector layer (with parameter information) with 
gridded points with known location coordinates was used to predict 
Vs30 values of their respective location.

Fig. 3. Final Vs30 data points obtained for different locations in the Himalayan region using the geolocation data from reports, published articles and the metric 
georeferencing procedure. Inset maps show the spatial distribution of Vs30 data points in major cities of the region.

Fig. 4. Histogram of Vs30 datapoints with site class boundaries shown as vertical lines.
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4.3. Model selection, hyperparameter optimization and model stacking

As our dataset has only a few Vs30 data points corresponding to site 
classes B and A, we developed an ML model exclusively for predictions at 
sites with Vs30 values below 760 m/s (i.e., Site Classes below B). So, we 
removed the Vs30 data points corresponding to values greater than 760 
m/s from our dataset, leading to 3022 data points from the initial value 
of 3077. For model training, Vs30 values and numerical regressors were 
transformed using BoxCox transformation in the collected dataset (Box 
and Cox, 1964). For geological information, which was in categorical 
form, the data was converted into dummy variables for the model 
development. Dummy variables were created while considering all the 
geological classes available for the Himalayan region from the map. The 
dataset was initially divided into training (Tr, 65 %), validation (Va, 20 
%), and testing (Te, 15 %) sets. Then, different ML algorithms were 

trained together on the Tr dataset using 10-fold cross-validation, such as 
regression trees, support vector machines, Gaussian Process Regression 
(GPR) models (Rasmussen and Nickisch, 2010), ensemble techniques 
(boosting and bagging) (Breiman, 1996; Galar et al., 2011) and multi-
layered Neural Networks. Va dataset is used to test the performance of 
these models.

In the next step, a Bayesian optimization algorithm is used for 
hyperparameter optimization for different models. Fifty trials were 
evaluated for each model during hyperparameter optimization while 
minimizing the initial model’s root-mean-squared error (RMSE) values. 
Based on the prediction performance of the trained models on the test 
dataset (here Va), the top-performing three models with the best results 
based on accuracy measures such as Root Mean Square Error (RMSE), 
Mean Absolute Error (MAE) and coefficient of determination (R2) were 
opted for further hyperparameter optimization. Table 4 lists all the pa-
rameters used for a particular model’s assessment. These top three 
performing models with optimized hyperparameters were used as base 
models for the stacked ensemble model. Fig. 8 shows the schematics of 
the first stage of the model development.

Model stacking is a common technique to improve prediction 
robustness and performance for unseen data. It works by combining the 
prediction results of different models. In this method, the best- 
performing models are usually stacked together (Vilalta and Drissi, 
2002; Džeroski and Ženko, 2004). This technique relies on the fact that 
various ML techniques utilize different assumptions, number of model 
parameters, and tuning methods for model development. Their suit-
ability for prediction may vary across different scenarios. The final 
model is an ensemble of all base models. The most common methods 
used for model stacking are bagging (Breiman, 1996), random forest 
(Ho, 1995), and boosting (Freund and Schapire, 1997). Fig. 9 shows the 
schematics of the procedure adopted for creating the Stacked Ensemble 

Fig. 5. Plots of Vs30 data points w.r.t. their (a) Elevation (in m), (b) Slope (in percentage), (c) Nearest Distance to River (in m), (d) Roughness values using SRTM- 
DEM. The colour ramp shows parameter values for the same locations.

Table 3 
A list of all the parameters/predictors used for the Vs30 prediction.

Predictor (Units) Abbrev. Range

Elevation (m) Elev 0–4014
Slope (%) Slop 0–100.58
Geology Geol Categorical
Nearest distance to river (m) Dist 0.0016–4106
Topographic Position Index TPI − 18 to 15
Terrain Ruggedness Index TRI 0–39
Topographic Wetness Index TWI 8.54–17.51
Roughness Rough 0–116
Profile Curvature Prof_Curv − 0.0092 to 0.005683
Plan Curvature Plan_Curv − 0.1288 to 0.19092
Vector Ruggedness Measure VRM 0–0.0632
Morphometric Feature MF Categorical
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Model (SEM). In the present case, we have used an ensemble technique 
to stack three top-performing models. A 5-fold cross-validation strategy 
is used to train the stacked ensemble model. At this second stage of 
model development, predictions from base models on the Va dataset 
were utilized as training sets for the final stacked ensemble model. This 
final stacked model was tested using the Te dataset to evaluate its per-
formance. A Bayesian optimization algorithm is used for hyper-
parameter optimization of the ensemble.

The mean of absolute Shapley values (Lundberg and Lee, 2017) was 
used to understand the importance of different predictors on the model 

predictions. The Shapley value of an independent variable or feature for 
a data point explains the departure in corresponding predicted values 
from the average due to the variable, while its sign indicates the direc-
tion of the change. Shapley value of the i th feature for the query point x 
is calculated as (Lundberg and Lee, 2017): 

ϕi =
1
N
∑

S⊆F\{i}

(
(|S|!(N − |S| − 1 )! )

(N − 1)!

)[
fS∪{i}

(
xS∪{i}

)
− fS(xS)

]
(1) 

here, N – number of all features or independent variables.
F – the set of all features or independent variables
S – a feature subset of F
|S| - the cardinality (or number of elements) of the set S
fS∪{i} – trained model with feature i present
fS - trained model without feature i
xS – Values of the input features in the set S
The mean value of the absolute Shapley values for a particular 

explanatory variable over a set of data points is calculated to give a 

Fig. 6. Geological map considered for the present study (modified from Wandrey, 1998). The legend shows geological classes in which the Vs30 datapoints fall. Here 
CMi – Carboniferous Mesozoic rocks, Cmsm – Cambrian sedimentary and metamorphic rocks, Jms – Jurassic metamorphic and sedimentary rocks, Mi – Mesozoic 
igneous rocks, MzPz – Paleozoic and Mesozoic metamorphic rocks, N – Neogene sedimentary rocks, pC – undivided Precambrian rocks, Pg – Paleogene sedimentary 
rocks, Pz – Undifferentiated Paleozoic rocks, Q – Quaternary sediments, Qs – Quaternary sand and dunes, TrCs – Upper Carboniferious - Lower Triassic sedimentary 
rocks, Trms – Triassic metamorphic and sedimentary rocks, Ts – Tertiary sedimentary rocks.

Fig. 7. Relative frequency of Vs30 data points with respect to geological 
classes. Here, Q – Quaternary sediments, pC – undivided Precambrian rocks, N – 
Neogene sedimentary rocks, Qs – Quaternary sand and dunes.

Table 4 
Accuracy measures are calculated and used to compare the different machine- 
learning models.

Model Performance Measure Formula*

Root Mean Square Error (RMSE) RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
yi − ŷi

)2
√

Mean Absolute Error (MAE) MAE =
∑n

i=1

⃒
⃒yi − ŷi

⃒
⃒

Coefficient of Determination (R2) R2 = 1 −

∑n
i=1

(
yi − ŷi

)2

∑n
i=1

(
yi − y

)2

* Notations: n – number of data points, yi – observed value for i th datapoint, ̂y 
– predicted value for i th datapoint, ȳ - mean value of the observations.
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magnitude of the variable’s importance on the chosen model’s pre-
dictions. Then predictor importance plots were prepared for all three 
models to understand the contribution of different predictors in the first 
stage and assess the impact of base models on the final SEM in the second 
stage.

4.4. Model modification and map preparation

Due to the lack of Vs30 datapoints corresponding to steeper slopes, 
prediction results from ML methods typically show better performance 
in site classes C, D, and E but underpredict the Vs30 values for site 
classes A and B (Geyin and Maurer, 2023). As discussed in earlier ref-
erences (Matsuoka et al., 2005; Wald and Allen, 2007), steeper slope 
values are usually associated with site classes A and B (rocky terrains). 
Relying on observations from Allen and Wald (2009) (hereafter referred 
to as AW09) for higher slopes, we classify sites with slope values 
exceeding 14 degrees as site class B (Vs30 > 760 m/s) in our map 
development.

For the Vs30 maps preparation at specific resolutions, values were 
resampled from base 30 m × 30 m SRTM using the nearest neighbour 
method for categorical data such as geological or morphometric features 
and bilinear interpolation for the continuous data values. In the nearest 
neighbour method, the value closest (in the input raster) to the cell on 
the output raster is assigned to it. In the bilinear interpolation technique, 

a weighted average of the four nearest input raster cells is assigned a 
new value to the output raster. In contrast, weights are assigned 
considering the distance between input cells and the centre of the cell in 
the output raster.

5. Results and discussion

Next, we present prediction results from best-performing models and 
the stacked ensemble model for validation and test sets. Then, we pre-
pared Vs30 site-condition maps for the whole Himalayan region and a 
few sub-regions based on the Stacked Ensemble Model (SEM).

5.1. Stacked ensemble model’s performance evaluation

Based on the prediction performance of the trained models (Table 5) 
on the test data, three models (two ensemble models - one boosted, 
another bagged, and a third GPR model with an exponential kernel 
function) with the best results were selected for further hyperparameter 
optimization. The Mean of Absolute Shapley values importance plot is 
shown in Fig. 10 for the three models, highlighting the importance 
ranking of different predictors on the model predictions. In Fig. 10, 
parameters other than those mentioned in Table 3 are geological cate-
gories. From these parameter importance plots, it can be observed that 
on average site Elevation, certain geological categories, terrain Slope 
value, Roughness, and Vector Ruggedness Measure (VRM) value of a site 
have the most influence on the prediction results.

The feature importance analysis in Fig. 10 reveals significant insights 
about the influence of geological data on Vs30 prediction across all three 
base models. Despite utilizing a relatively low-resolution geological map 
(Wandrey, 1998), geological classification emerges as one of the most 
influential predictor categories across all models, with several geolog-
ical classes consistently ranking among the top predictors. Examining 
the mean absolute Shapley values more closely, we observe that certain 
geological classifications – particularly Quaternary sediments (Q), un-
divided Precambrian rocks (pC), Neogene sedimentary rocks (N), and 
Quaternary sand and dunes (Qs) – demonstrate consistently high 
importance rankings across all three models. This pattern correlates 
strongly with the distribution of our dataset, as shown in Fig. 7, where 
these same geological classes represent the most frequent classifications 
among our observation points. The high ranking of these geological 
classes relative to continuous variables like slope demonstrates geol-
ogy’s fundamental role in determining site response characteristics. 
While topographic parameters capture the surface expression of un-
derlying geological conditions, the direct inclusion of geological classi-
fication provides critical information about site properties that cannot 
be inferred from topography alone. These findings underscore the value 
of integrating geological data into site classification models, even when 
available at relatively coarse resolution. The consistent importance of 
geological predictors across different modelling approaches suggests 

Fig. 8. A schematic for the first stage of the model building by selecting best- 
performing ML models.

Fig. 9. Schematic diagram showing steps in creating the stacked ensemble 
model for Vs30 predictions.

Table 5 
Results of different machine learning models’ performance measures (Table 4) 
for validation (V) and test (T) sets. Here, GPR – Gaussian Process Regression, 
SVM – Support Vector Machines, and modifiers before these models are the type 
of their kernel function.

Model RMSE 
(V)

R2 

(V)
MAE 
(V)

RMSE 
(T)

R2 

(T)
MAE 
(T)

Bagged Tree Ensemble 73.9 0.415 50.9 70.4 0.464 48.1
Boosted Tree Ensemble 74.5 0.406 50.4 70.2 0.466 46.6
Exponential GPR 78.7 0.337 55.8 76.5 0.367 52.6
Rational Quadratic GPR 79.0 0.333 55.9 76.9 0.360 53.0
Squared Exponential GPR 79.4 0.325 56.0 75.8 0.379 51.9
Matern 5/2 GPR 79.7 0.321 56.1 76.3 0.370 52.3
Medium Tree 80.5 0.306 55.6 76.3 0.370 53.4
Medium Gaussian SVM 80.6 0.304 54.8 77.3 0.353 51.3
Linear Regression 82.0 0.280 59.4 79.8 0.312 57.8
Fine Gaussian SVM 82.4 0.273 57.0 81.2 0.286 55.4
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that future site classification efforts could benefit from incorporating 
higher-resolution geological maps where available, potentially leading 
to further improvements in prediction accuracy.

Fig. 11 shows the prediction results for all three models. For all of 
them, the concentration of best prediction (less spread) is around the 
Vs30 values of 100 to 600 m/s. These models underpredict higher values 
of Vs30 corresponding to NEHRP site classes A and B. The Boosted Tree 
Ensemble model performs best on the test set with the lowest MAE 
(46.6) and highest R2 (0.466), followed closely by the Bagged Tree 
Ensemble model. The Exponential GPR model shows the weakest per-
formance of the three, with higher error metrics and lower R2 values on 
both validation and test sets. All models perform better on the test set 
than the validation set, suggesting good generalization capability rather 
than overfitting. The relatively modest R2 values (0.337–0.466) indicate 
the inherent complexity of predicting Vs30 values in the geologically 
diverse Himalayan region.

Fig. 12 shows the corresponding residual plots for the models. These 
residual plots show random scatter around the zero line. For higher 

values of predicted response, the scatter increases in the case of all three 
models. A comparison with the histogram plot in Fig. 4. shows that all 
models predict well around the Vs30 range, where most observation 
values lie. For the models to optimize their prediction, hyperparameters 
were tuned using a Bayesian optimization algorithm. In hyperparameter 
optimization, hyperparameters used for ensemble methods were the 
number of learning cycles, learn rate and minimum leaf size, and for the 
GPR model, these were sigma values of the model.

Fig. 13 presents the prediction results from the Stacked Ensemble 
Model (SEM) for both validation and test sets. The SEM demonstrates 
robust performance on the validation set, achieving an RMSE of 71.8 m/ 
s and an R2 of 0.445. When evaluated on the independent test dataset 
(Te), the final SEM, which was subsequently used for Vs30 prediction 
and map development, achieved an RMSE of 78.3 m/s and an R2 of 0.38.

Fig. 14 illustrates the mean absolute Shapley values for the stacked 
model, revealing the relative influence of each base model on the final 
predictions. The boosted ensemble model exerts the strongest influence 
on the SEM predictions, followed by the bagged model and then the GPR 

Fig. 10. Different Vs30 predictors’ (Table 3) importance ranking based on the mean of absolute Shapley values (representing average impact on model output 
magnitude) for machine learning models - (a) Bagged trees, (b) Boosted trees, and (c) Exponential GPR, respectively. Parameters other than those mentioned in 
Table 3 are geological categories, as in Fig. 6.
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Fig. 11. Prediction results from best-performing ML models for validation and test sets. For validation set using (a) Bagged trees, (c) Boosted trees, and (e) 
Exponential GPR; and for test set using (b) Bagged trees, (d) Boosted trees, and (f) Exponential GPR, respectively.
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model. This ranking pattern corresponds directly to the descending 
order of R2 values observed for these individual models on the test set 
(Table 5).

The alignment between Shapley values and R2 rankings can be 
attributed to two key factors. First, the meta-learner in the stacked 
ensemble model optimizes prediction accuracy by allocating greater 
weight to base models with superior predictive performance. Second, 
models with higher R2 values typically demonstrate more consistent 
performance across different data subsets, making them more reliable 

contributors to the ensemble. Fig. 15(a) and (b) display the residual 
variations for the SEM model on the validation and test set observations, 
respectively.

5.1.1. Comparison with Allen and Wald (2009) model
Next, we compare the performance of the SEM to the Allen and Wald 

(2009) model. We have modified the predictions of the SEM model using 
the Allen and Wald (2009) criteria for the sites with slopes greater than 
14 degrees. We made predictions using both models on the test dataset 
(Te) with 453 records for the comparison. Fig. 16 shows the comparison 
plots for the two models’ performance using parameters MAE and 
RMSE. The SEM demonstrates substantial and consistent superiority 
over the AW09 model across all Vs30 categories, achieving an overall 
64.6 % improvement in Mean Absolute Error and 52.6 % improvement 
in Root Mean Square Error across the test dataset (Te). The performance 

Fig. 12. Residuals from best-performing ML models for validation and test sets. 
For validation set using (a) Bagged trees, (c) Boosted trees, and (e) Exponential 
GPR; and for test set using (b) Bagged trees, (d) Boosted trees, and (f) Expo-
nential GPR models, respectively.

Fig. 13. Prediction results from the stacked ensemble model for - (a) Validation 
set (RMSE = 71.8 m/s, R2 = 0.45, and MAE = 48.8 m/s), and (b) Test set 
(RMSE = 78.2 m/s, R2 

= 0.38, and MAE = 53.0 m/s).
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advantages vary systematically across different Vs30 ranges, with the 
most pronounced improvements occurring in the 180 to 259 m/s cate-
gory (Fig. 16a), which represents nearly half of all data points of the test 
dataset (Te) and encompasses typical urban soil conditions where the 
SEM achieves a remarkable 80.49 % error reduction (Fig. 16c). For very 
soft soils (0 to 180 m/s), the SEM reduces prediction errors by 63.44 % 
(Fig. 16a, c), demonstrating significant improvement in conditions 
where ground motion amplification effects are most critical while 
maintaining strong performance in medium-stiff conditions (259 to 360 
m/s) with a 55.79 % error reduction across 130 sites (Fig. 16a, c). Even 
in the highest Vs30 category (360 to 760 m/s), where slope-based 
models typically perform better due to correlations between steep 
topography and rock outcrops, the SEM still achieves a 37.84 % 
improvement over AW09 (Fig. 16a, c).

Beyond average error reduction, the SEM shows improved error 
consistency through RMSE improvements that confirm enhanced per-
formance without additional prediction volatility, making it particularly 
valuable for engineering applications requiring both accuracy and reli-
ability (Fig. 16b, c). The comprehensive performance advantage across 
all Vs30 ranges, with the most significant improvements occurring in the 
ranges most relevant to urban seismic site characterization, positions the 
SEM as a better alternative to traditional slope-based Vs30 prediction 
methods for earthquake engineering design and seismic hazard 

assessment applications.

5.2. Site-classification maps of major cities

5.2.1. Delhi
The site classification map for Delhi (Fig. 17) shows that most of the 

urban area falls within NEHRP site class D, with smaller areas classified 
as C and E. This distribution is consistent with the geological setting of 
Delhi, which is primarily built on Quaternary alluvial deposits of the 
Indo-Gangetic Plains. The predicted values align well with the Vs30 
contour map Satyam and Rao (2008) developed based on 117 MASW 
measurements, which reported values ranging from 230 to 350 m/s. 
However, the present map reveals finer spatial variability masked by the 
contour representation in previous studies. Compared to the NCS (2016)
map, which broadly classified most of Delhi in the Vs30 range of 154 to 
360 m/s, the present results provide more detailed differentiation within 
this range, which is critical for site-specific hazard assessment. A few 
regions on their map lie in the NEHRP site class C (Vs30 between 360 
and 760 m/s), which is also the case in the present study.

5.2.2. Dhaka
The site classification map for Dhaka (Fig. 18) reveals a predomi-

nance of site classes D and E, reflecting the city’s location on thick 

Fig. 14. Different machine learning models’ importance ranking based on the 
mean of absolute Shapley values (representing average impact on model output 
magnitude) for the stacked ensemble model.

Fig. 15. Residuals from the stacked ensemble model for - (a) Validation set 
(RMSE = 71.8 m/s, R2 = 0.445, and MAE = 48.8 m/s), and (b) Test set (RMSE 
= 78.3 m/s, R2 = 0.38, and MAE = 53.0 m/s).

Fig. 16. Plots comparing the Stacked Model and Allen and Wald (2009)
model’s – (a) Mean Absolute Error (MAE), (b) Root Mean Squared Error 
(RMSE), (c) Performance Improvement (in percentage) on the test dataset (Te) 
across different Vs30 ranges (in m/s). For this analysis Stacked model’s pre-
diction has been modified using Allen and Wald’s (2009) criteria for sites with 
slopes greater than 14 degrees.
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Holocene deposits of the Bengal Basin. We developed a modified clas-
sification scheme subdividing the standard NEHRP classes to visualize 
spatial variations better. The predicted Vs30 values, ranging primarily 
between 145 and 260 m/s, agree with the map developed by Rahman 
et al. (2018a), who used Holocene soil thickness as a predictor. How-
ever, the present study’s map covers a larger area and provides more 

detailed spatial resolution. The consistency between these indepen-
dently developed maps validates our approach while offering improved 
spatial coverage.

5.2.3. Kathmandu
The Kathmandu Valley presents a more complex site classification 

Fig. 17. Site class map of Delhi (India) region using a 50 m × 50 m grid based on the stacked ensemble model.

Fig. 18. Site class map of Dhaka (Bangladesh) region (50 m × 50 m raster grid) based on the modified stacked ensemble model.
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pattern (Fig. 19a) due to its setting as an intermontane basin surrounded 
by steep mountains. This map differentiates rock sites (classes A and B) 
in the surrounding hills and soil sites (classes C and D) in the valley floor. 
To better visualize the variations within the valley, we created a second 
map (Fig. 19b) focusing only on on-site classes C and D. This reveals 
significant spatial heterogeneity in site conditions across the valley, with 
lower Vs30 values in the central and southern portions where lacustrine 

deposits are thickest. These prediction results are consistent with the 
Vs30 contour map developed by Gilder et al. (2022) using a kriging 
interpolation, with estimated values ranging from 0 to 900 m/s across 
the region. However, the current approach provides more detailed 
spatial variations than their contour representation, particularly within 
the valley where rapid lateral changes in subsurface conditions occur.

Fig. 19. Site class maps of Kathmandu (Nepal) based on a) NEHRP criteria, b) histogram-based (while discarding site classes A and B) using Vs30 values predicted by 
the modified stacked ensemble model (50 m × 50 m raster grid).
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5.2.4. Guwahati
The site classification map for Guwahati (Fig. 20a) shows a clear 

distinction between rock sites (classes A and B) in the hills and soil sites 
(classes C and D) in the Brahmaputra River valley. Like Kathmandu, we 
created a second map (Fig. 20b) focusing only on the valley area better 
to visualize the variations in site classes C and D. The predicted Vs30 
values in the valley range primarily from 200 to 360 m/s, which aligns 
well with the contour map developed by DST (2007) and subsequently 
used by Sharma and Rahman (2016). However, Fig. 20b map reveals 
more detailed spatial patterns not captured by the smooth contours in 
previous studies, reflecting the influence of local geological and 
geomorphological features on on-site conditions.

5.3. Site classification map for the Himalayan region

The regional site classification map for the entire Himalayan region 
(Fig. 21) at 1 km × 1 km resolution reveals the broad patterns of site 
conditions across this complex terrain. The map shows a clear correla-
tion between physiographic provinces and site classes. The High Hi-
malayan Zone is predominantly classified as site classes A and B, 
reflecting the presence of crystalline rocks and steep slopes. These areas 
typically exhibit Vs30 values exceeding 760 m/s. The Middle Himalayan 
Zone and Siwalik Hills display a complex pattern of site classes B and C, 
with occasional patches of class D in valley bottoms. This variability 
reflects the heterogeneous lithology and complex topography of these 
regions. The Indo-Gangetic Plains are classified as site classes C and D, 
with Vs30 values generally decreasing from north to south as sediment 
thickness increases from the mountainfront. The deltaic regions of 

Fig. 20. Site class maps of Guwahati region (India) based on a) NEHRP criteria, b) histogram-based (discarding site class A and B) using Vs30 values predicted by the 
modified stacked ensemble model (50 m × 50 m raster grid).
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Bangladesh and eastern India predominantly fall within site classes D 
and E, consistent with the presence of thick, soft sediments in these 
areas.

This regional classification represents a significant improvement 
over previous efforts by Sitharam et al. (2015), who used a slope-based 
approach at 10 km × 10 km resolution. While their map classified the 
Himalayan region into broad zones of site classes B, C, and D, Fig. 21
higher-resolution map reveals substantial local variations crucial for 
regional hazard assessment. Furthermore, the present study’s integrated 
approach incorporating multiple predictors provides a more robust 
classification than single-parameter methods.

5.4. Implications of geological data resolution and model limitations

Using low-resolution geological maps (1:5,000,000 scale) represents 
a compromise between regional coverage and local detail. This limita-
tion has following consequences for the model development and 
resulting site classification maps: (i) The coarse geological classification 
system (14 classes) may not capture important lithological variations 
that influence site response, particularly in areas with complex geology, 
such as intermontane valleys and tectonically active zones; (ii) 
Geological boundaries in the mapped data are necessarily generalized, 
potentially leading to misclassification of sites near these boundaries; 
and (iii) the inability to represent smaller geological features such as 
local fault zones, intrusions, or thin sedimentary layers may result in 
overlooking significant local amplification effects.

Despite these limitations, the current approach offers several ad-
vantages over previous studies. Integrating geological data, even at low 
resolution, with multiple geomorphological parameters provides a more 
comprehensive characterization of site conditions than purely 
topography-based methods. The machine learning framework enables 
identifying and weighing the most significant geological factors, maxi-
mizing the utility of available data. Furthermore, the consistent 
geological classification across the entire Himalayan region allows for a 
direct comparison of site conditions between different areas, facilitating 
regional hazard assessment.

Future work should explore integrating higher-resolution geological 
maps where available, potentially implementing a hierarchical 
approach that uses detailed geology for urban centres and generalized 
geology for remote areas. Developing geologically informed transfer 
learning techniques could also help address data gaps by adapting 
models trained in data-rich areas to geologically similar but data-poor 
regions, thereby improving prediction accuracy while maintaining the 
benefits of regional consistency.

6. Summary and conclusion

The seismic response of complex terrains such as the Himalayan 
region is influenced by a combination of geological, geomorphological, 
and geotechnical properties. However, most existing site classification 
approaches rely on a single parameter, limiting their effectiveness in 
capturing the region’s complexity. This study presents a novel approach 
that integrates multiple proxies to develop comprehensive Vs30-based 
site classification maps for the Himalayan region using a modified 
stacked ensemble model.

We developed our approach through three key steps: (i) the creation 
of a comprehensive Vs30 database by combining direct measurements 
with data extracted through metric georeferencing of published maps; 
(ii) the identification and integration of twelve geological and 
geomorphological predictors; and (iii) development of a stacked 
ensemble model that combines the strengths of multiple ML algorithms, 
resulting in a final robust model. Our methodology addresses the chal-
lenge of underprediction for steeper slope sites by incorporating the 
AW09 criteria for slopes exceeding 14 degrees.

The final stacked ensemble model used for the Vs30 prediction and 
map development has RMSE values of 78.3 m/s and R2 of 0.38 on the 
test dataset. The stacked ensemble model reveals significant spatial 
variability in Vs30 across the Himalayan region (Fig. 21). High Vs30 
values (> 760 m/s, site classes A and B) predominate in mountainous 
areas with steep slopes and exposed bedrock. Moderate Vs30 values 
(from 360 to 760 m/s, site class C) characterize the middle mountains 
and foothills. Low Vs30 values (from 180 to 360 m/s, site class D) are 

Fig. 21. Site classification map of the Himalayan region using stacked ensemble model-based predictions shown using a 1 km × 1 km raster grid.
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prevalent in valley bottoms, river terraces, and the upper Indo-Gangetic 
Plains. Very low Vs30 values (< 180 m/s, site class E) are found pri-
marily in deltaic regions and areas with thick, soft sediments.

The high-resolution urban-scale maps for Delhi, Dhaka, Kathmandu, 
and Guwahati capture local variations crucial for site-specific hazard 
assessment. The resulting site classification maps reveal significant 
spatial heterogeneity across the Himalayan region. Mountain areas are 
predominantly classified as site classes A and B, foothills as C and D, and 
deltaic regions as D and E. These patterns align with the known 
geological and geomorphological framework of the region. The high 
spatial resolution of our maps reveals detailed variations that coarser 
regional maps or interpolation-based approaches would miss.

This study advances seismic site classification methodology by 
demonstrating how integrating multiple data sources and machine 
learning techniques can overcome the limitations of previous ap-
proaches. The resulting maps provide essential information for earth-
quake hazard assessment, infrastructure planning, and building code 
implementation in this seismically vulnerable region. Future work 
should focus on expanding the dataset, particularly for steeper slopes, 
incorporating higher-resolution DEM models, and developing purely 
region-specific models as more data becomes available. This approach is 
particularly valuable for mountainous regions like the Himalayas, where 
comprehensive geotechnical data remains limited.

Authors contribution

Both authors contributed to the conceptualization of the study. HT 
contributed to the data collection, data analysis, model development, 
map preparation, writing, reviewing and editing of the manuscript. AP 
contributed to supervising, reviewing, and editing the manuscript.

CRediT authorship contribution statement

Harish Thakur: Writing – review & editing, Writing – original draft, 
Visualization, Validation, Software, Methodology, Formal analysis, Data 
curation, Conceptualization. P. Anbazhagan: Writing – review & edit-
ing, Supervision, Project administration, Conceptualization.

Declaration of competing interest

The authors declare that they have no competing financial interests 
or personal relationships that could have appeared to influence the work 
reported in this paper.

Acknowledgements

We thank M/s Secon Pvt. Ltd. for funding the project “Effect of shear 
wave velocity calibration on Amplification of shallow and deep soil 
sites” grant No: SECON/IISc/MoES/WO/07-18/0079.

Data availability

Data will be made available on a reasonable request.

References

Abbasnejadfard, M., Bastami, M., Jafari, M.K., Azadi, A., 2023. Spatial correlation 
models of VS30 values: a case study of the Tehran region. Eng. Geol. 325, 107300. 
https://doi.org/10.1016/j.enggeo.2023.107300.

Akin, M.K., Kramer, S.L., Topal, T., 2011. Empirical correlations of shear wave velocity 
(Vs) and penetration resistance (SPT-N) for different soils in an earthquake-prone 
area (Erbaa-Turkey). Eng. Geol. 119 (1–2), 1–17. https://doi.org/10.1016/j. 
enggeo.2011.01.007.

Allen, T.I., Wald, D.J., 2009. On the use of high-resolution topographic data as a proxy 
for seismic site conditions (VS 30). Bull. Seismol. Soc. Am. 99 (2A), 935–943. 
https://doi.org/10.1785/0120080255.

Anbazhagan, P., Kumar, A., Sitharam, T.G., 2013. Seismic site classification and 
correlation between standard penetration test N value and shear wave velocity for 

Lucknow City in Indo-Gangetic Basin. Pure Appl. Geophys. 170, 299–318. https:// 
doi.org/10.1007/s00024-012-0525-1.

Anbazhagan, P., Srilakshmi, K.N., Bajaj, K., Moustafa, S.S., Al-Arifi, N.S., 2019. 
Determination of seismic site classification of seismic recording stations in the 
Himalayan region using HVSR method. Soil Dyn. Earthq. Eng. 116, 304–316. 
https://doi.org/10.1016/j.soildyn.2018.10.023.

Ansary, M., Tasmiah, A., Al Noman, M., 2023. Development of empirical correlations 
between shear wave velocity and in situ penetration test results for different types of 
soils in DMDP area, Bangladesh. Arab. J. Geosci. 16 (4), 280. https://doi.org/ 
10.1007/s12517-023-11342-z.

Bajaj, K., Anbazhagan, P., 2019. Seismic site classification and correlation between VS 
and SPT-N for deep soil sites in Indo-Gangetic Basin. J. Appl. Geophys. 163, 55–72. 
https://doi.org/10.1016/j.jappgeo.2019.02.011.

Bandyopadhyay, S., Sengupta, A., Reddy, G., 2019. Development of correlation between 
SPT-N value and shear wave velocity and estimation of non-linear seismic site effects 
for soft deposits in Kolkata city. Geomech. Geoeng. 16 (1), 1–19. https://doi.org/ 
10.1080/17486025.2019.1640898.

Bhutani, M., Naval, S., 2020. Assessment of seismic site response and liquefaction 
potential for some sites using borelog data. Civ. Eng. J. 6, 2103–2119. https://doi. 
org/10.28991/cej-2020-03091605.

Box, G.E., Cox, D.R., 1964. An analysis of transformations. J. R. Stat. Soc. Ser. B Stat 
Methodol. 26 (2), 211–243. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x.

Brando, G., Pagliaroli, A., Cocco, G., Di Buccio, F., 2020. Site effects and damage 
scenarios: the case study of two historic centers following the 2016 Central Italy 
earthquake. Eng. Geol. 272, 105647. https://doi.org/10.1016/j. 
enggeo.2020.105647.

Breiman, L., 1996. Bagging predictors. Mach. Learn. 24 (2), 123–140. https://doi.org/ 
10.1007/BF00058655.

BSSC, 2015. NEHRP Recommended Seismic Provisions for New Buildings and Other 
Structures. Washington, D.C.

Building Seismic Safety Council (BSSC), NEHRP Recommended Provisions for Seismic 
Regulations for New Buildings and Other Structures (FEMA 450), 2004. Building 
Seismic Safety Council, National Institute of Building Sciences, Washington, DC, 
USA. 

Chatterjee, K., Choudhury, D., 2013. Variations in shear wave velocity and soil site class 
in Kolkata city using regression and sensitivity analysis. Nat. Hazards 69, 
2057–2082. https://doi.org/10.1007/s11069-013-0795-7.

Crespo, M.J., Benjumea, B., Moratalla, J.M., Lacoma, L., Macau, A., González, Á., 
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